Decoupling Constraints from Sampling-Based Planners
نویسندگان
چکیده
We present a general unifying framework for sampling-based motion planning under kinematic task constraints which enables a broad class of planners to compute plans that satisfy a given constraint function that encodes, e.g., loop closure, balance, and end-effector constraints. The framework decouples a planner’s method for exploration from constraint satisfaction by representing the implicit configuration space defined by a constraint function. We emulate three constraint satisfaction methodologies from the literature, and demonstrate the framework with a range of planners utilizing these constraint methodologies. Our results show that the appropriate choice of constrained satisfaction methodology depends on many factors, e.g., the dimension of the configuration space and implicit constraint manifold, and number of obstacles. Furthermore, we show that novel combinations of planners and constraint satisfaction methodologies can be more effective than previous approaches. The framework is also easily extended for novel planners and constraint spaces.
منابع مشابه
PhD Thesis Proposal: Extending Probabilistic Roadmaps for Unknown Kinodynamic Constraints
Probabilistic Roadmap (PRM) planners have been used to generate paths for articulated robots for several years. By using random sampling techniques, PRM based planners are able to plot paths for robots with many degrees of freedom without needing to explore large parts of the search space that traditional planners would have to examine to create efficient paths. This has enabled them to be used...
متن کاملOptimal characteristics determination of engine mounting system using TRA mode decoupling with emphasis on frequency responses
It is possible to improve vehicle vibration by tuning the parameters of engine mounting system. By optimization of mount characteristics or finding the optimal position of mounts, vibration of the engine and transmitted force from the engine to the chassis can be reduced. This paper examines the optimization of 6-degree-of-freedom engine mounting system based on torque roll axis (TRA) mode deco...
متن کاملReachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems
Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end-effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this ch...
متن کاملSampling-Based Motion Planning under Kinematic Loop-Closure Constraints
Kinematic loop-closure constraints significantly increase the difficulty of motion planning for articulated mechanisms. Configurations of closed-chain mechanisms do not form a single manifold, easy to parameterize, as the configurations of open kinematic chains. In general, they are grouped into several subsets with complex and a priori unknown topology. Sampling-based motion planning algorithm...
متن کاملConstrained Motion Interpolation with Distance Constraints
We present a novel constraint-based motion interpolation algorithm to improve the performance of local planners in sample-based motion planning. Given two free-space configurations of a robot, our algorithm computes a one-dimensional trajectory subject to distance constraints between the closest features of the robot and the obstacles. We derive simple and closed form solutions to compute a pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017